skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shahjahan, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synthesis of amine incorporated hierarchical metal organic framework (MOF) MIL-101(Cr)/SBA-15, meso/ micro-porous composites, with tailored properties for CO 2 capture is reported. The synthesized composites were characterized in terms of their crystallinity, morphology, functional groups, and textural properties. Isothermal adsorption of CO 2 from concentrated sites as well as ambient conditions were evaluated by gravimetric and volumetric measurements. The optimized composite i.e., MIL-101(Cr)/SBA-15/PEI-25 showed improved pseudo- equilibrium adsorption capacity of 3.2 mmol/g at 303 K and 1 bar, compared to nascent SBA-15 (0.8 mmol/g) and the MOF, i.e., MIL-101(Cr) (1.3 mmol/g). Such adsorption performance can be attributed to the basic sites of the impregnated polyethyleneimine (PEI), unsaturated Cr(III) metal sites, and the hierarchical pore structure of the composite which imparts chemical as well physical adsorption forces towards CO 2 lower amine loading of 25 wt% in the composite resulted in facile CO 2 uptake. Interestingly, desorption at much lower temperature of 
    more » « less